RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

SECOND YEAR [2015-18] B.A./B.Sc. THIRD SEMESTER (July – December) 2016 Mid-Semester Examination, September 2016

Date : 10/09/2016 Time : 11 am - 1 pm

MATHEMATICS (Honours)

Paper : III

Full Marks : 50

[5]

[3+2]

[5]

[Use a separate Answer Book for each group]

<u>Group – A</u>

(Answer <u>any five</u> questions)	[5×5]

- 1. Let U and W be two subspaces of a finite dimensional vector space V over a field F. Then prove that $\dim(U+W) = \dim U + \dim W \dim(U \cap W)$. [5]
- 2. Let U be the subspace of \mathbb{R}^4 generated by $\{(1,0,1,1),(1,2,1,0)\}$. Find two different subspaces P, Q of \mathbb{R}^4 such that $U \oplus P = \mathbb{R}^4$ and $U \oplus Q = \mathbb{R}^4$.
- Let A, B be two matrices over the same field F such that AB is defined. Then show that rank of AB ≤ min{rank A, rank B}
 For what values of 'a' the following system is consistent?

x - y + z = 1x + 2y + 4z = ax + 4y + 6z = a²

4. Find the rank of $A = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 3 & 1 & 2 & 3 \\ 1 & 7 & 2 & 1 \end{pmatrix}$. Also express the matrix, as a product of two matrices with

rank 'rank A'. Find all 1×3 real matrices B such that BA = O where A = $\begin{pmatrix} 1 & -1 & 1 \\ 3 & 2 & 2 \\ 4 & 1 & 3 \end{pmatrix}$. [3+2]

5. For what values of 'k' the planes

x + y + z = 2 3x + y - 2z = k2x + 4y + 7z = k + 1

form a triangular prism. Let V and W are vector spaces over the same field F. Let T be a linear transformation from V to W. Then show that ImT is a subspace of W. [3+2]

6. Find the values of 'a' and 'b' for which the system

x + y + z = b 2x + y + 3z = b + 1 $5x + 2y + az = b^{2}$ has (a) only one solution, (b) no solution, (c) many solutions.

7. Let V and W be vector spaces over the same field F. Also let $T: V \rightarrow W$ be a linear transformation. If V is finite-dimensional, then show that $nullity(T) + rank(T) = \dim V$. [5] 8. Let V be the vector space of all real polynomials of degree ≤ 3 and $D: V \rightarrow V$ is defined by $Dp(x) = \frac{d}{dx}p(x), p(x) \in V$ and $T: V \rightarrow V$ is defined by $Tp(x) = x\frac{d}{dx}p(x), p(x) \in V$. Relative to the ordered basis $\{1, x, x^2, x^3\}$ determine the matrix of the linear transformation TD - DT.

<u>Group – B</u>

(Answer <u>any three</u> questions)

- 9. A particle describes an ellipse under a force which is always directed towards the centre of the ellipse. Find the law of force.
- 10. If h be the height attained by a particle when projected with a velocity V from the earth's surface supposing its attraction constant, and H the corresponding height when the variation of gravity is taken into account, prove that $\frac{1}{h} \frac{1}{H} = \frac{1}{r}$, where r is the radius of the earth.
- 11. A heavy uniform chain of length 2ℓ , hangs over a small smooth fixed pulley, the length $\ell + c$ being at one side and ℓc at the other; if the end of the shorter portion be held and then let go, show that

the chain will slip off the pulley in time $\left(\frac{\ell}{g}\right)^{1/2} \log \frac{\ell + \sqrt{\ell^2 - c^2}}{c} \ (\ell > c)$.

- 12. A mass is suspended from a ceiling by a light elastic string of natural length ℓ . When the mass hands in equilibrium, the length of the string is $\ell + c$. The mass is started off from this position of equilibrium with downward vertical velocity v. If in the subsequent motion the string never becomes slack, show that $v^2 \le cg$.
- 13. A particle is projected with velocity u at an inclination α above the horizontal in a medium whose resistance per unit mass is k times the velocity. Show that its direction will again make angle α

below the horizontal after a time $\frac{1}{k} \log \left(1 + \frac{2ku \sin \alpha}{g} \right)$.

<u>Group – C</u>

(Answer <u>any two</u> questions)

14. Prove that the lines whose direction cosines are given by the equations $a\ell + bm + cn = 0$, $u\ell^2 + vm^2 + wn^2 = 0$ are perpendicular if $a^2(v+w) + b^2(w+u) + c^2(u+v) = 0$ and parallel if $\frac{a^2}{u} + \frac{b^2}{v} + \frac{c^2}{w} = 0$.

15. If 2c be the shortest distance between the lines $\frac{x}{\ell} - \frac{z}{n} = 1$, y = 0 and $\frac{y}{m} + \frac{z}{n} = 1$, x = 0, show that

$$\frac{1}{c^2} = \frac{1}{\ell^2} + \frac{1}{m^2} + \frac{1}{n^2} \,.$$

16. Find the smallest sphere which touches the lines $\frac{x-2}{1} = \frac{y-1}{-2} = \frac{z-6}{1}$ and $\frac{x+3}{7} = \frac{y+3}{-6} = \frac{z+3}{1}$.

_____ × _____

[5]

[3×5]

[2×5]